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ABSTRACT

Threshold  selection technique s have been used as a
basic tool in image segmentation , but l i t t l e  work has been
done on the problem of evaluating a threshold of an image.
This  paper addresses the problem of threshold evalua tion
and proposes two methods for measuring the “goodness ” of a
thresholded image , one based on a busyness cri ter ion and
the other based on a discrepancy or error criterion . These
evalua t ion techniques are applied to both syn thet i c  and
real images and are show n to be u se fu l  in f a c i l i t a t i n g
threshold selection . In fact , both methods usua l ly  resul t
in similar or identical thresholds which yield good sejmcn-
tations of the images.
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CHAPTE R I

INTR ODUCTI ON

The use of thresholding as a tool in image segmenta-

tion has been extensively studied , and a variety of techni-

ques have been proposed for automatic threshold selection.

A review of these techniques is presented in Appendix A.

This paper addresses the problem of evaluating the

“goodness ” of a threshold applied to an image and compares

two criteria for evaluating thresholds. Such threshold

evaluation criteria can be used to evaluate threshold selrc—

ti.on techn iques , by evaluating the thresholds obtained

using these techniques. Of course , a threshold evaluat1~~n

function can also be used for threshold selection , b’;

~jJI)lying the function to a range of thresholdings of an

image and choosing the one yielding the best evaluation.

In using a threshold evaluation function for threshold

~~ lec~~ion , we should ideally select the threshold corres-

ponding to the minimum cost. As we will see in later see—

Lions , minim i.’ing an evaluation function does not always

resul t in reasonable  t h r e sho lds .  However , even in such

cases , th e use of an evalua t ion func tion doe s provid e a

rii~ t hod of threshold selection that makes reasonable

t ; ~res~~(n (is  ed~; 1( ’r  t detect.

We will examine two i~ethous o~ evaluating and select—

i nq t h r e s h o l d s , one based on a busyness criterion and the

other bas ci on a discrepancy or error criterion . By

applying these methods to both synthetic and real im~~ vs

1
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we will find that they usually result in similar or identi-

cal thresholds which y i e ld  good segmentat ions of the ima ges.

A compar ison of the computa tional cos t of the two method s

is also given.

Throughout the paper we will , whenever possib le , relate

our work on threshold evaluation and selection to image

models in order to gain a better understanding of the mean-

ing of a good image segmentation .



CHAPTEP II

THRESHOLD EVALUATION CR ITERI A

To evaluate a given thresholding of an image , one can

take an approach analogous to that used Ly Martelli and

Montanan [
~ for evaluating smoothines of images. They

defined a cost function which was a weighted combination

of the fo l lowi ng components:

1) A d iscrepancy measure , based on the di f f e rence

between the orig inal and smoothed pictures. The measure

proposed was the sum of the squared differences between

gray levels of corresponding po int s in the or ig inal  and

smoothed picture .

2) A busyness or roughness measure based on the com-

putation of a local property on the smoothed pic t u re .

For example , the sum of absolute values of ~ difference

operator such as the gradient or Laplacian could be used .

Both of these components of the goodness of a smoothed

picture are potentially relevant to thresold evaluation.

The s t ructure of a thresholded image should not d i f f e r  f rom

that of the original image with respect to the number ,

sizes and shapes of objects. Thus it should be possible

to formulate a criterion of goodness for thresholding

analogous to the discrepancy criterion for smoothing . The

busyness criterion is certainly applicable to tests of

threshold goodness if we adopt the point of view that a

good th reshold is one which minimizes the amount of noise

3

--~~~~~~~~~~
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or roughness in the resul t ing image . We w i ll now exami ne

the appl icabili ty of discrepancy and busyness cr iteri a to

threshold evaluation and discuss methods of computing these

measures on a thresholded image.

We will not consider how the discrepancy and busyness

measures mi ght be combined into a single evaluation func-

tion . In any case , as we shall see , the two measures tend

to give the same or similar thresholds when they are us tii

for  thre shold select ion.
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2.1 Discrej~~nqy~ Measures

It is not obvious how the definition of the discrepancy

measured used to evaluate smoothing could be extended to

threshold evaluation. One cannot simply measure the diff-

erence between the thresholded and unthresholded images ,

since the output levels used for display of the thresholded

image ~re usually chosen arbitrarily , and this difference

is sensitive to their choice . For example , if the output

levels were fixed at 0 and 63 , then for an image with gray

levels in the range 0 to 9 , a threshold of 10 or greater

would always minimize discrej~ancy by producing a thresholded

pictur e consisting of all 0’ s. Clearly, this would not be

desirable. A careful choi ’e of output levels is necessary

in order to use this measur . t -  arrive at meaning f u l

t hresholds . Since a thresh IJ valuation criterion based

on t h e  o u t p u t  levels  used f o r  d i sh l ay  of the th re sho lded

ir: agc does not correspond to  an y  of our i n t u i t i v e  n o t i o n s

ef how to choose a good threshold , we will not pursue this

topic hero . A further discussion of this type of di scr~--

incy measure is contained in it;j ndix P.

An alt~~rnative approach to measuring the “discrepancy ”

of a throsholded image is in terms of classification error [ 2

I~’ t  us suppose that the imaqe consists ot dark (i.e., hi gh

rì v love 1) obj r c t  s on a light background , where the di n —

‘ribution of gray levels in the objects is normal with mean

and standard deviation G
l~ 

and that the oIi~ ects ocCu~v
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fraction ~ of the p icture poin ts.  Then the cond it ional

probability density of the qray levels of object points is

1 2 2p ( z j  .
~~ ) = e x p [ — ( z — ~~1) / 2 0 1 1

~~~~~~ 1
1

Similarly, if the distribution of gray levels in the back-

ground is normal w ith mean 
~~ 

and standard deviation 0
2 1

then we have

= —--———- exp (—(z—~i 2
) /2021

:2 ii

Th~ n , the 
~ 
Lc ture has overall gray level probability den—

4 (l-~i)p (zL 2
)

We ca n now take as a cri ter ion of threshold goodness

tti e number of points misclassified by the given threshold .

Suppose tha t a threshold t is chosen such tha t  al l  poin ts

wit h gray level x ~
-‘ t are classified as object points .

Then the probability of misclassifying an object point as

background poin t is

S~ r i iIarly, the probability of misclassifying a background

poInt as an object point is

!p ( z  w 2
) dz

t

L . .. ________ ~~~~~~~~~~~~~~



7

The overall misclassif ica tion probability is then

P (
~~rrorIt) 

= i1 [~~P (zI i
) d z ~ + (l O)[ P (Z1~~~

)(1Z
~ (1)

Minimizing (1) enables us to obtain a minimimum error

threshold for the image .

A clc~ed form fo r t , the minimum error threshold can
m

be ob tained by se tt in g dP (errorlt) to zero and solving

for t . Using this equa tio n requires knowing the param eters

and a priori probabilities of the object and background

distributions. These parameters cars be obtained by fitting

normal curves to the gray level histogram . The algorithm

we will use to do the fitting [ 3 ] is iterative , w i t h  each

successive iteration approach ing a bet ter approx imatio n

accord ing to some l ikelihood f unct ion.  This  procedure wil l

converge toward a locally optimal fit but is not guaranteed

to f ind a g loba l optimum . Thus , the parameters ob ta ined

are dependent on the initial inputs for these parameters.

In addition , it may be diff icult to ob tain good f its s ince

the histogram may be badly truncated at either end of the

i ray scale.
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2.2 Busyness Measures

A threshold evaluation criterion based on the amount

of busyness , noise or roughness in the thresholded image

seems to capture many of our intuitive notions of what

cons titutes a good threshold . Isolated noi se po in ts both

in the object and in the background of the thresholded

image are usuall y undesirable , as are larger holes in

objects and clusters of noise points in the background ,

since the objects and background should ideally occupy dis-

joint gray level ranges and should have simple shapes. In

shor t, we would like our thresholded images to look smooth

rather than busy. We propose to embody these notions of a

good threshold in an automatic threshold selection pro-

cedure based on a busyness measure computed on the

thresholded image.

One method of computing the amount of busyness corres-

ponding to a given thresholding of an image is based on the

gray level co—occurrence matrix [4 1. Let M (1 0)

and M ( 1,_1) be the joint probability matrices for

gray levels occurring in relative positions (1,0 ) ,  ( 0,1) ,

( 1 ,1) and (l ,—l) , respectively . Represent by M the

average of these four matrices, each of which is symmetric

about the main diagonal. Suppose that a given threshold t

maps all gray levels greater than t into the object and

al l  o ther  levels into the background . This mapping de f ines

a partition of matrix M into three non—overlapp ing areas :

1) M at r i x  elements represent ing co—occurrences of



(3

gray levels in the object , i.e. , those M ( i , j )s

such tha t  i > t and j > t (shaded area A of F ig .

1)

2) Matrix elements representing co-occurrences of

gray levels in the backgrou nd , i.e., those M (i ,j ) s

such that i ~ t and j ~ t (sha ded ar ea B of F ig .

1)

3) Matrix elements representing co—occurrences of

object gray levels with background gray levels ,

i.e., M(i , j ) s  such that i ~ t and j > t (shaded

area C of Fig . l)o r  i > t and j ~ t (shad ed

area C ’ ) .

Note that since matrix t4 is symmetr ic about the main

diagonal we can restrict our consideration to those matrix

elements M ( i ,j) such that i ~ j.

Given a threshold t of an image , the measure of busy-

ness C( t) which will be used throughout this paper is

computed by summing tho:;e entries of the co—occurrence

matrix representing the percentage of object-background

adjacencies (i.e., the entries in area C of Fig . 1) .  I f

C (t) is relatively high for a given threshold we would ex-

pec t the thresholded image to contain a large number of

noise points and/or jagged edges. Conversely, a relatively

low C(t) would indicate that the threshold chosen results

in a smooth picture . C(t) will be zero if all gray levels

are mapped into the same output level. S ince this is

obviously not desirable, the min imizd t ion  of C ( t ) mus t
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where n is the number of gray
levels in the image .

-



11

be done subject to constraints on the allowable range of

the threshold. These constraints will be discussed further

in Section 2.3.

An al ter native measure of the amoun t of busynes s in a

thr esholded image could be computed by app ly ing  a 4 or 8

neighbor Laplacian to that image and using the average (or

sum) of the absolute Laplacian values as a busyness measure.

Note that salt and pepper noise points and jagged edges

both contribute high absolute Laplacian values. The

Laplacian—based busyness measure and the co—occurrence—

based measure C(t) are basically equivalent. This can be

shown by consider ing the cont r ibut ions tha t dif f erent

nei ghborhood conf i gura tions of l ’ s and 0’ s (in the threshold-

ed image) make to both the Laplacian and co—occurrence matrices.

The Laulacian value at a point in a thresholded image is

ur ( oort.ional to the number of neighbors which differ from that

point. For example , the value of the 4-neighbor Laplaciari

at an isolated noise point is 4. Similarly, if we compu’.

a co-occurrence matrix based on pairs of points which are

horizontally and vertically adjacent , this  too examines  the

four  neighbors of each point , and in reg ion C , it counts

the number of these neighbors which differ from the point

in the thresbolded image. The co-occurrence matrix is

u s u a l l y  no rmal ized so that  the entries sum to one .

Analogously,  the average ra ther than the sum of the

Laplacia n values may be used . Thus the two methods of

measuring busyness may yield results which differ by a con-

stant factor.
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The co—occurrence—based busyness measure has been

chosen in th is  study fo r reasons of computational simp li-

city. Busyness measures for a range of thresholds of an

image can be efficiently computed from its gray level co-

occurrence ma tr i x .  The matr ix can be computed in 0(r )

ope rations where r is proportional to the picture area .

For successive thresholds , C ( t ) , the busyness measure for

a threshold t , can be e f f i cient ly  computed by upda ting the

previously computed busyness measure C(t-l) with the appro-

priate row and column entires as follows :

t—l fl

Ct t) = C(t—l) — 
~ M ( i ,t )  + ~ M(t , j )

i=l j=t+l

whe re n is the number of gray levels in the image (and the

dimension of M) . The range of thresholds over which we

would compute the busyness measure could be limited to a

narrow range by examining the gray level histogram .

A potential advantage of using the Laplacian measure

is tha t  the Laplacian value s correspond to various neighbor-

hood configurations -- for example , isolated noise po ints ,

l ine ends , l ines, and edges , which could be lighter or

darker than their surrounds. This information could be

valuable in evaluating a given threshold of an image with

respect to various types of busyness in the thresholded

image , which cannot be distinguished by analyzing the co-

occurrence matrix. Use of more refined measures of busy-

ness , possibly based on the Lap lacian , should be considered

in future studies.
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2 . 3 Threshold Select ion Cri teria

We have discussed in Sections 2 .1 and 2 .2 measures

for  eval ua ting the “goodness ” of a thresholded image based

on d iscre pancy and busyness  cr iter ia. U si ng ei ther of

these approaches we would minimize the associated evalu-

ation f u n c tion in order to select the best thresho ld . In

this section we will show that constraints must be imposed

on the al lowable threshold range in order to guaran tee

th at the threshold  segmen ts th e image in to two reg ions (in

accorda nce with our image model)

In Sect ion 2 .1  we def ined the discrepancy measure as

the sum of the probabilities of the two types of mis-

classifica tion errors: object point misciassificatiorE and

background poin t m i s cla s s i f i cations .  We have made the

assump tion tha t both of these type s of error s ar e equ a l l y

costly, and tha t  a zero cos t is ass igned to a correc t

classification . Our decision rule is:

Decide if f(x) > t ;

Ot herwi se decide

where f(x) is the gray level of a point x , and t is the

threshold. To minimize the average probability of error

we would choose t so that our decision rule always chooses

the class ~ whose a pos teriori  probabil ity P (w~~lx) is

maximum . This decision rule is Bayesian [5]

T’ find the value t which minimizes the averaqe prob-

ability of 01 ror we can differentiate the expression for

P (e r r o r~t) which was given previously in (1)

O [1P
i~zIw 1 dz] + (1—0 ) [JP (z1w 2)dz]
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and set the resul t  equal to zero to obtain  the fol low ing

equat ion :

0p(tj~~1
) = (1—0) p(t~ w2

) (2)

Since pairs of normal curves whose var iances  are unequa l

intersect at two points , s a t i s f y i n g  ( 2 )  does not resul t in

a uni que choice of t. In general , one of the intersection

points (t
1

) m i n i m i z es P (e r ro r~ t ) and the other (t
2
) maxi-

mizes this probability [6]. Fig. 2 shows examples of in-

tersect ions  of pairs of normal curves. In Fig. 2a , the

minimum error threshold t
1 

lies between the object and back-

ground means . In Fig . 2b , both t 1 and t 2 lie outside the

range between the means. In this latter case , if we

threshold at t1 (to obtain minimum error) , th e thresholded

image would consist of almost al l  0’ s. Since we have made

the assumption that our images consist of two types of re-

gions (a
1 

and a
2

) ,  any threshold resulting in a single re-

gion is not satisfactory.

We will therefore impose on our minimum error threshold

evaluation function the constraint that t lie between the

object and background means , i.e., we will select t such

t ha t  ( a )  
~2 ~ ~ ~l 

and (b) P(errorl t) is minimal. Any

threshold satisfying (a) and (b) will be referred to as a

discrepancy threshold. The restricted range for t ensures

that , if the means of the object and background distribu-

tions are equal to their medians (as is the case , e.g., for
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norma l d i s t ribu tions) , then

a) the probability of misclassifying an object point

does no t exce ed ~1/2 , where 0 is the a pni.ori prob-

ab i l ity of an ob ject poin t , and

b) the probability of misclassif y ing a background

point does not exceed (l-0)/2.

Apply ing o..ir constraint (a) to the example of Fig . 2b re-

sul ts in t being sel ected at the obje ct mea n .  Th is

choice results in 50% of the object points being mis-

classified . Values of t g rea te r  than  ;~~ yield object mis-

classification rates greater than 50~..

In our previous discussion of busyness (Section 2.2)

we made the assumption that images contain two gray level

populations. Based on this image model we will attem ~~ t to

predict the shape of the busyness curve to determine where

busyness attains i t s  rinirr a so we can decid~ whether we

must also impose constrain’s on the allowable range of

the busyness threshold.

We will again consider histograms composed of two

Gaussian distributions. be pending on the degree to which

the pop u la t io n s ov erl ap and on the i r rela tive we i ghts , the

sum of two normal distributions can result in a bimodal or

unimodal histogram. We will see that in either case it is

reasonable to suppose that the busyness curv e will resemble

the image ’s gray level histogram .

Consider first the case of a bimodal histogram . If

we threshold at the mode of the background distribution we

would expect busyness to attain a relative maximum . This
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occurs because the probability of pairs of background

points occurring on opposite sides of t is great - ;t at the

mode which is the mean of the background population in our

image model. I f  we choose t at the mode , then 
~b’ 

the

probability that. a background gray leve l is less than L ,

is .5, and 
~~~~~~~~ 

, the probability that pairs of L~~m-

ground points are on opposite sides of t, is maximum , so

busyness should also be maximum . Analogously, at the peak

of the object distribution, busyness should also attain a

relative max imum . Similarl y, in the valley on the q ra y  leve l .

histogram , th e busy ness curve should also have a vall ey .

This occurs for the following reason: We are assuming

that the gr ay levels in the va l l ey  lie on or near  the

borders  of obj ect s, and that their frequency of occurrero-

is low . Thu s, when t is chosen in the valley , the bUSy-

ness measure varies in proportion to the perimeter of th

object which grows or shrinks in size depending on wher

in the vall ey t l ies .  (Note tha t values  of t chosen to

the loft of the valley bottom should result in larger

objects than values of t to the right of the valley

bottom.) Few non-border points contribute to busyness

since for thresholds in the valley the object and back—

ground interiors are assumed to be relatively noise-free .

Hence , thresholds ch osen in the valley re sult in much

:rnil le r busyness va lues than those which cause the ci ject .

( F  t I ( k g r o u n d  in t e r i o r  to break up (e.g., when t. is chosen

at  ~~~ her mode).

We can also view the busyness curve as a sum of two



types of busyness , contributed by t he  o b j e c t  and b y t he

back ground , respectively. The curve corresponding to busy-

ness in the o b je ct  resembles  the ob j e ct  h i s t og r a m , a nd t h e

curve cor responding  to busynes s  in t h e  b a c k g rou n d  r e s em b l e s

the  background  h i s t o g r a m . So , for  a b imoda l  h i s t o g r a m  we

would expect  a bimodal busynes s  cu rve  a c h i e v i n g  a m i n i m u m

between the peaks.

Since we know that busyness is zero f o r  choices  of t

-it the ex t reme ends of the  g r a y s c a l e  (r e s u l t i n g  in one

case in a l l  l ’ s , and the o the r  in a l l  0 ’ s ) ,  the  t h r e s h o l d

at tn c  v a l l e y  bot tom on a b imodal  busyness  curve  doe s not

correspond to an abso lu te  m i n i m i z a t i o n  of thr  busyness

f u n c t i o n .  However , i f  we c o n s t r a i n  t to lie between the

means (as we did fo r  d i s c r e p a n c y)  , and then minimize busy-

ness , the valley bottom would be chosen as our busyness

thr-. sholi . The rationale for this constraint on t is

basically the same as previously discussed . We I r e  not

‘~ i 1 l i n , to m i s c l a s s i f y  more t h an  h a l f  of th e  object poi r~t~
.

(i~~~ b ~ckground points or ‘-ice versa .

We w i ll now discuss tl ~~. choice  of a busyness threshold

tor unimodal busyness curve . When t h e  image contains a

s m t  11 ci ]ect on a l a rg e  b a c kgr o u n d  ( E ~ clo- ;e to 0) , and the

means of these regions are net too tar apart , we may ex p e c t

situations such as shown in Fig . 3. h ere t he  hj s t o i r a ~ rn

contains a peak corresponding t t he bt ckg round , but t h

object does not produce a 
~ 

ak , since the rat . 01 fa I lot I

of the background population outweighs the rise c o r r e s p o n d —
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a

b

Fig. 3. Histograms containing peaks and shoulders.



20

in .~ t t i .’ obj e c t  p o j l l i l a t  ion . h owever , the  presence  of the

cl i e c t  w i l  I a t  l ea st , p r o d uct  i change  in  the  slope of the

ii ss; thu s, 1. 5 Fig . 3 , t h is slope t l a t te n~-; ou t  (or  at

1. 1st uet . rue s I L S S  st t eb l y  negative ) is t he  o b j e c t  mean is

I .  ,1.1.eU - h~ will ret or to such a s lope cha n ge as a

1 or t hL’ hist rram. The busynes s  curve  should  a lso

I s p ! i,’ ~~ucs -i 51105 iCie r , f o r  the  reason di  scus sod p r o —

w i l i  assume that the shoulder on a unimodal

t t ~~s ’ . r r a r ~, .i n i  or t . ~ co r respond ing  busyness  curve , l ies

~~ t he  ~‘ i : h ’. ot  r h ,  1k. The left edge of the shoulder

is . 1  L r w s . r~ an .i:rupt change in slope occurs. Be—

i : : J i 5I~~~~~~u~~~ t. : .i s r lOt ‘h’ loss of busyness due to leaving

• t o  aa . -.o: ou~ ; pu Lit loft S i nf l u e n c e d  by the ga in  in

b .  ~~~fle 53 1 I ’ - ‘ 0 efl~ or in; th e object population . A

I ‘)fl Ii, Ic :noi - . : t t he  threhsold t would thus  be the

slit ~I s r ’ s it ~~r •-d it , S i n c e  t h e  curve becomes less steep

(rI the ~ h ’ ;u l it r i n c r e : ,en t a l  decrease in busyness for

e .ich succe.-;slve threshold t to the r i g h t  of the shoulder ’ s

L e t t  od ;e is less t han the incremental increase in busy-

ness  r e s u l t . t r o ;  ~rum d e c r e a s i n g  the threshold (i.e., moving

t ’  ~. hC lef’ of t h e  shoulder) . The shoulder edge , like the
i.illey be’ torn on a b i m o da l  curve , corresponds  to a change

in slope on the busyness curve . At the shoulder edge the

sl(,r,e becomes less negative hut does not change in sign as

it  do : ,tt the valle y bottom . In the discussions which

fo llow we wi.ll refer to thresholds chosen at the valley

bottom on a bimodal busyness curve or at the shoulder on

a ‘irL l rTio (l,Il busyness curve as busyness thresholds.



CHAPTER II I

THRESHOLD EVALUATION FOR SIMPLE CLASSES OF IMAGES

To gain .i better understanding of the busyness and

discrepancy criteria for threshold evaluation , we can

s’ tii : bucyness values for simple classes of images . Suppose

t h a t  an image consists of dark objects on a light back—

ground , with sharp edges between them. We shall investi-

gate som e s imple models for the popul ations of gray level s

in the object and in the background . This will involve

assumptions about the distributions of gray levels and of

co—occurrences of gray level pairs. Based on such models

we can predict the structure of the co-occurrence matrix

whicn determines the busyness measures for q .iven thresholds.

~~ will also compare busyness thresholds with discrepancy

th resholds.

21



3.1 Images with Uncorrelated Gray Levels

Let us make the same assumption as in Section 2.1 re-

uarding the Gaussian distributions of gray levels in the

object and back ground , and let us further assume that the

gray levels of adjacent. pixels are uncorrelated. (These

assumptions will be refined later.) We can specify the

structure of the co—occurrence matrix and the resulting

bu syness  measure for  a give n thr eshold t . In model ing the

co—occurrence matrix we shall treat it as an infinite

matrix with zero entries outside t he  finite submatrix M.

The Gauss ian model f o r  the image gray levels gives

rise to three bivariate pr bib ility densities in the co—

occurrence matrix . These represent the co-occurrences of

(1) object points with object points (population A 1)

(2) background points with background points (population

A2
), and ( 3 ) object  poin ts wi th back g round points (popula-

tion A 3) , or vice versa . These densi ties ar e d e f i n e d  by

the exponen tials

~ 1 (x , y )  = 
1
2 ~xp { [ (x- 11 1) 2 

+ ( y -p 1) 2 ]/ 20 2 }
2110 i

p2
(x ,y) = 

2 
1

2 ex p {- [  (x— 11 2 ) 2 + (y-~i
2
)2 ] / 2 o~~} ; and

p3
(x ,y )  = 

1 exp {—[ (x- ij 1) 2 /2o~ + (y-lI 2)
2/2a~~]

211010 2

respectively. The relative positions of these populations

in the co-occurrence matr ix  is shown in F ig .  4 .
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11
2 111

Fig. 4. Sketch of a co-occurrence matrix for
images with uncorrelated gray levels.
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The relative weights of these three subpopulations de-

pend on the rela tive areas of the ob je ct , the background ,

and the object—background border. For large , compac t oh-

l ects , the border will have much lcss area t han the objects.

For example , i f the object  is an m by m solid square, the

border area is 8m (4m-4- 4 background points that are

adjacent to object  poin ts , and 4m—4 object points ad jacent

to background points) ; for large m , th i s  is much less than
2the ob ject a rea (m ) .

The busyness measure for a given threshold t is

arrived at by summing the contributions made by the three

populations to the number of object—background adjacencies.

These contributions are , respec tively (see Fig . 5)

t t t
B1

(t) = 5 f p 1 (x ,y)dxdy - f f p
1

(x , y ) d x d y

t t t
÷ 5  5 p1

(x , y ) d xdy - 5 f p1(x , y )dxdy

t t
= f S p1

(x ,y)dxdy + ‘ I p1 (x,y )dxdy -

t t
2 f f p 1(x , y ) d xdy
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Fi g. 5. Busyness contributions by the three bivariate
probabil ity densities in the co-occurrence matrix.

indica tes con t r i b u t i o n s  to busyness .
Con t r i b u t i o n s  to busyness made by popula t ion A 1.b ) .  Con t r i bu t i ons  to busyness made by population A 2 .c ) .  Con t i r b u t i o n s  to busyness  made by popu l a t i o n  A 3.
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B
2

(t) = 5 5 p 2 (x ,y ) dx d y  - 5 5 p2 (x , y)d x d y

+ 5 f p 2
(x ,y )dxdy - _L f p ( x y)dxdy 

~
~ p2

(x ,y )dxdy + f f p
2

(x ,y ) d x d y - 2 f J p
2
(x,y)dxdy

r t t
B
3
(t) = I 5 p3 (x ,y ) d x d y  — f f p

3
(x ,y )dxdy

t cx~ t t
+ I 5 p3

(x ,y ) d x d y  - 5 5 p
3

(x ,y)dxdy

~‘ t t ~ t t
= f f p

3
(x ,y)dxdy + 5 5 p3 (x , y ) d xdy - 2 f f p

3
(x ,y)dxd y

In order to evaluate busyness  thresholds for th is

simple  cla ss of images , a set of s y n t h etic images wa s

qenerated . Each of these pictures , shown in Fia . 6

con ta ins two normal ly  d i s t r ibu ted  gray leve l popula tion s .

The f rac tion of the total picture area occup ied by the

object was eitaor 50, 25 or 10 percen t . For each of the

three object sizes pictures were created having object

gray level mean 30, background mean 20 , and standard de-

viationsas follows :

Standard Deviation Standard Deviation
Case of Object ~~~ f background

1 3 3
2 3 5
3 5 3
4 5 5

Histograms of the pictures of Fig . 6 are shown in Fig . 7.
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a—c 
~~~~~ ~b

3

d-f 
_____ 

- 
00 

= ~ °b 
=

g-i 
- 

. :1 ~~~~~ ~o 
= ~ °b 

=

j—l = ~ °b =

Fig. 6. Synthet ic images.

For each of the above images the mean gray
level of object points is 30 and the mean of
background points 20. The standard devia-
t ions of objec t gray levels , o~~, and of back-grou nd gray levels , °b’ are listed above .
The object occupies 50% of the total  p icture
area for  pictures a , d , g and j ;  25 % for
p ic tures  b , e, h and k ; 10% for  c , f , i and 1.

a-c ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

d-f ~~ ~~~

g — i ~ -

j—l ~~~~~~
‘-

Fig. 7. Histograms of the p ictures of Fig. 6.
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Co-occurrence matrices computed on each of the twelve

synthetic images and log-scaled for output are shown in

bi g. 8. Note that since the correlations of pairs of gray

levels in the objec t and in the background populations are

zero , the component distributions that make up t h e  co-

occurrence matrices are circularly symmetric. The popula-

tioris representing the co-occurrence of object gray levels

with background gray levels are barely visible, if at all ,

in the matrices of Fig . 8. This is not surprising since

the percentage of poi nts on or adjacent  to the border i s a

smal l  f r a c t i o n  of the total area (4 , 3 , and 2 % for  the

squares occupyi ng 50, 25 , and 10% of the picture area )

When the d is tri bution s of object  and back ground g ray level s

overlap to the extent of Fig. 8j-l , the component popula-

tions are not distinguishable in the co—occurrence matrix.

Graphs of busyness for a range of thresholds are shown

in Fig. 9 for the pictures of Fig. 6. Note that each of

these curves resembles the shape of its corresponding gray

leve l histogram in Fig. 7. In addition , the overall shape

of the busyness curve is smoother and less noisy than that

of its corresponding histogram .

The busyness curves of Fig. 9a , b , c , d , g, h , i and

j are bimodal while those of Fig . 9e. f, k and 1 are un i-

modal. For the bimodal curves busyness thresholds are

chosen at the valley bottoms . The uriimodal curves of Fig .

9e and f show a slight slope change about midway between

the minimum and maximum . Busyness thresholds were chosen

at the points on the curve corresponding to the slope
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a-c

d-f ~~~

g-i S S...

j-l

Fig . 8. Co-occurrence matrices (log-scaled )
for the pictures of Fig . 6.

a-c

d- f

g-i

j—1

Fig. 9. Graphs of busyness (y-axis) vs.
threshold (x-axis) for the pic-
tures of Fig. 6.
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ie .~ nd t h e i r  p o s i t i o n s  are  i n d i c dt e d  by v e r t i c a l  l i n e s

t I 1 . J .  u . ( ‘ Ib i s  s lo p e  ct i in . ; e  can Is: detected a u t o ma t i c a l l y

it toe r ’ i• . -th d I sc r i b ,d i n [ 7 1 . ) it s .. busyness  t h r e s h o l d s

~~Iuson a r e  listed in Table 1 . The curves of Fig. 9k and

I ShOw alt .ihnst Unear r a t e  of f a l l o f f  of b u s y n e s s  and so

t hc bus  :o~ss t h r e s h o l d s  were se lected et  the  ob jec t  m e a n .

For e on p a r i s o i t  w i t  the busyness  curves , g raphs  of

i 1 s cr .~~ an c y  ire shown in Fig. 10. Discrepancy thresholds

are ilso listed in Table 1. Note that only for Fig. 6Q~ is

tite discrepancy threshold chosen at the object mean.

For nine out of the tweleve pictures the busyness and

di screpancy thresholds differ by only one gray level. In

six cases the thresholds are identical (Fig . 6a , b , c , g,

j and 1) . For the pictures in which the thresholds differ

b y 2 , 3 or 4 (F i g .  C e , k and f , r e s p e c t i v e l y )  the busyness

- u r v ( ’r  are unimodal. The busyness thresholds of Fi g. (: r

and  f were chosen at the point to the right of the peak

wh re t h e  slope changes ; for  Fig. 6k the threshold was

c -s ri at. the object mean . For Fig . 6 , the only other

p i c t u r e  whose  busyness  curve is unimodal , both the b u s y n e s s

and discr pancy thresholds were chosen at the object mean.

ln s u mm a r y ,  t h e  discrepancy and busy ness thresholds  d i f f er

by at mos t 1 in 9 out of the 12 cases , i n c l u d i ng all the

cases where the busyness curves are bimodal.

The results of thresholding the pictures of Fig . 6 at

every threshold in the range t = 17 to t = 32 are shown in

Fig. 11. A threshold at gray level t maps all gray levels

greater than t into the object and all other levels into
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a-c 
_ _  i L

d-f

g- i

j — l

Thü~1flflIfluLmm~~ V

Fig. 10. Graphs of discrepancy (y-axis) vs.
threshold (x—axis) for the pictures
of Fig. 6.
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the background. From Fig. 11 we see that in most cases

the thresho ld s l isted in Table 1 are reasonable

thresholds .
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3.2. Images with Correlated Gray Levels

I n our mode l up to now we have made an unreal istic

assumption about the correlations of each of t h e  three

populations in the co—occurrence matrix. W.- have assumed

that pairs of gray levels in the object (or background) are

independent , i.e., have correlation zero. This implies that

toe density functions in the co—occurrence matrix represent-

ing these points are circularly symmetric.

A more realistic mode l would assume a non— zero

correlation between neighboring points. A correlation near

1 would tend to elongate the density function along the

diagonal , while a negative correlation would elongate the

d e n s i t y  a long a line perpendicular to the diagonal . In real

images the correlations of points in the object and back-

ground popu1atior~ should be pos it ive, since adjacent points

which are not near the borde r would tend to hav e the same

or similar gray levels. The equations for the bivariate

densi ty functions assuming correlated data are

1 1
p1 (x1,x2) = 

TT2 
exp[-~-(X-M)

’ E 1 (X-M)]
‘‘~ ‘-‘1

2 2 r 2 2[ ° ll ‘121 I 0~()

where ~ = 2 2 I = I 2 21 L°2l 0 22 .1 L° oo

X =

M = (~i0,~i~~ ) ;

2 -and ,i
~~
, o~~, are the mean and variance of gray levels



-I •1

in the object , and is the covariance of

adjacent gray levels in the object.

p 2 (y 11y 2 ) = 
( 2 w ) 1~ 2 I 

exp [4 (X_M) ’ 
~;

1 (X_M) ]

2 2 —  2 2r o
11 12 I °b 0bb

where E 2 2 = [ 2 2L~21 o
22 J °bb

X = (y 1,y~~)

M =

and 
~b ’ o~ are the mean and variance of gray levels

in the background , and °bb is the covariance

of adjacent gray levels in the background .

::~:: L: :~~~~~~

‘ 
l/

e3) 

T~E~
’ ~~~ M)

X = (x ,y ~~:

M =

and 0
~b ,  a~~ are the covariances of object gray levels

with background gray levels and vice versa.

Another assumption we have made which does not corres-

pond to what occurs in real images is that the edges between

objects and background are sharp . This assumption doe s not

apply to most classes of real pictures since the edges are

blurred .
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We will study - i s imple  c lass  of b l u r re d  sy n t he t i c

Ima g es  c r e a ted  by u n w e i q ht e d  a v e r a g i n g  of the  s y nt b - t  ic

s r r s t q . - s  ot Sect ion 3.  1 n v . -r  squ u e ne ic j h b o r l oods . A l t h o u g h

a l i n e a r  b l u r r i n g  process  does not  ex a c t l y  model U t u r r i n : ;

i n  real images , it does p r o v i d e  a r ea sonah l  - f i r s t  a p p r o x i  —

s -en  to many  r e al  b l u r r i n g  p roce ss e s .  These images have

n on se r o  c o r r e l a t i o n s  be tween  a d ja c e n t  g r a y  l e ve l s  in t h e

ob j ect . (or  in  the  b a c k g r o u n d ) ,  and a lso  have b l u r r e d  odp .-S .

Three sizes of blurring neighbor :ic rds were appliod to

the p i c t u r e s  of F i g .  6 :  2x2 , 4 x 4 , and 8x8 (see F i g s .  12 , 13

and 14 , respectively). Histograms of these pictures are

snown in F ig s .  15 , 16 , and 17. As can be seen f r o m  the

h i s tog rams , the b l u r r i n g  process resu l ted  in a s h a r p e n i n g

of the peaks corresponding to the object and background

(since the standard deviations of t h e  ob j ec t  and b a c k g r o u n d

distributions were lowered) . Hence , the t a sk  of t h r e sho ld

selection for these pictures is much easier than for those

of F ig .  6.  Thresholds  could be chosen a t  the v a l l e y  bot toms

on the  h i s t oqr a m s  of F i g .  15 and i f ;  f o r  F i g .  17 the  valley

is broader and relativel y flat so we need a m e t  nod for de-

ciding which threshold in th e valley to choose. The threshold

selection schemes we have described are especially useful

when the histog ram is not strongly bimodal; in these cases

conve nt ional threshold selec tion techn iques are not read i ly

applicable. However , we w ill exami ne the results of usinq

these threshold selection methods on the blurred images of

Fig. 12-14 in order to attempt to understand how our methods

are a f f e c t e d  by the  b l u r r i n g  process.
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a-c 

~~~ a-c ~~~ 
_ _  _ _

d
~
fk. d-f

g-i g-i 

~~~j-l 
_  j-l 

_

Fig. 12. Fig. 13.

a-c

d - f

g-i i.~
j—l - 

.-.‘

Fig. 14 .

Figs. 12 , 13 , 14. Results of averaging the pictures
of Fig. 6 over 2x2 , 4x4 and 8x8
neighborhoods , respectively.
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I 
_a-c a—c 

______________________

d-f d-f _____________

g-i g—i

j—l _______________

Fig. 15. Fig . 16.

I - F
a-c

d-f 
______

g-i 
______

I 
_

j—l

Fig. 17.

Figs. 15 , 16 , 17. H istograms of the pictures of
Figs . 12 , 13 and 14 , respectively.
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We can compute the resulting corrc1~~tions of adjacent

gray levels in the object and in the background for each

blurred pictur i- . The correlations of a pair of hor izonta lly

or v e r t i c a l l y  ad j a c e n t  gray levels in the objects or in the

backgrounds of the blurred pictures of Figs. 12—14 are .5 ,

.75 , and .875 , respectively, since these cray levels arise

f rom p a i r ’ -  of b l u r r i n g  ne ighborho~ Js t h a t  over lap  by 50% , 75% ,

1 - -
and 85~-% . The mean gray levels of points in the objects

and in t h o  backg rounds  of the b l u r r e d  p i c tu re s  are the same

as those fo r  the pictures containing uncorrelated gray

levels (means 20 and 30 , respectively) . The standard de-

viations of the object and background distributions in the

biurred pic ture are given hy a// n where n is the number of

points in the blur neighborhood and a is the standard de-

viation of gra y levels before the blurring operation is

applied . Table 2 contains a list of the standard deviations

of the object and background populations of Figs. 6 and

12— 14.

Co—occurrence matrices computed on the blurred images

of Figs. 12-14 are shown in Figs. 18-20. The following

observation s can be made by comparing these matrices to those

of Fig. 8, wh ich were computed on the sharp images of Fig. 6~
(1) The population representing the co-occurrence of

object gray levels and that representing the co-occurrence

of background gray levels are elongated along the main

diagonal. The degrees to which these populations are



Figure Fiqure Ob~ ec t  hs c k~~round
No . Part Standard s-vi ati on ~ tindard Deviation

a , b , c 3.0 3.0

d , e , 1 3 .0 5 . 0
g ,  h , i 5.0 3.0

j ,  k , 1 5 . 0  5 . 0

a , b , c l .~ 1.5

d , e , f 1.5 2 . 5

g ,  h ,  i 2.5 1.5

j ,  k , 1 2 . 5  2 . 5

1 . a , b , c . 75 . 75

d , e, f . 75  1. 2 5
g, h , i 1.25 .75

j ,  k , 1 1.25 l. .5

a , b , c . 3 7 5  . 3 7 5

d , e , f . 3 7 5  .625

g,  h , i .6 2 5  . 3 7 5
j ,  k , 1 .625 .625

Table  2 .  S t a n d a r d  d e vi a t i o n s  of o b j e c t  and
background gray level populations
for the synthetic p ictures of
Fi gs. ‘ , 1 2 , 13 , and 14.



43

a-c 
_ _ _  _ _ _  _ _ _ _  

a-c H -

“Hd-f d-f
I -~

g-i g-i -

j l  
~~~~~~~~~~~~~~~ j—l - -

Fig. 18. Fig . 19.

a-c

d-f

g-i

-1 ’

Fig. 20.

Figs. 18, 19, 20. Co-occurrence matrices (log-
scaled) computed on the pic-
tures of Figs. 12 , 13 and 14 ,
respectively.
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elongated and pulled in towards the main diagonal are de-

pendent on their con e l i t  ions , which vary according to the

size of the blurrin g neighborhood used .

(2) As the S I Z e  of the blurring neighborhood in-

creases , the distribution of pairs of gray levels in the

middle ran u- (bi t w I-en thi object and background means)

approaches a uniform distrrbution. This can be seen in the

co-occurrence matri (-i.~s of t im images b l u r r e d  over 8x 8

neighborhoods. The  gr ay  “el inten sity (which is scal d

logarithmically according to t h e  probab ilit i i :: in the co—

occurrence matrix) is r e l a t i v eLy  c o n s t a n t  on or n t - a r  • he

d i a g o nal  be tween  the two d a r k  sp o t s , wh ich  corr~~spo;id ‘0

hills in the three—dimensional plot of t .e co—occurreoc~-

ma tr i x , and which represent adjacencies o~ pairs ot gr .iy

l eve l s  in the object and in the background .

From tne anev- - observations it is clear that our model for

the c o — o c c u r r t .-nc ’ .’ ma t r i ces  of images c o n t a i n i n g  o b j e c t s  on

a background  separa ted  by sharp  edges does not app l y  to the

case of ebj ct ;; w i t h  b l u r r y  edges. In blurred images , since

the blurry edge zone separates interior object points from

interior background poi n t s , pairs of points  on the b l u r r y

‘-d ge have the s ;tni- or similar gray levels and contribute to

th e  co—occurr ence ‘itrix along or near the main diagonal.

Sine’- t he gray levi-is on the edge lie between the object

mean m i d  the background mean , the population of pairs of

points on the edge connects the populations of co—occurring

object points m d  co-occurring background points. Thus , it

is reasonabEe tha t a mod -i for the co—occurrence matrix of
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a b l u r  r . -d image  w i i i  d cons i o t  of t h ree  i) Op U t a t i o n s  , a l l  of

wf ich i n -  cent - r - . i on ( a n d  s~’nur i . t r i c  . t l s ;i t ) t in - m a i n

d i a g o n a l .

Sev ra l p o ; s s - b l t. - n eile l ;; could be used to quantitativel y

d e s c r i b e  t ;~ 
- c o — o c c u r re nc e  matrix of a blurred ima ge . We

c a l  ci onc- a-~a in  a s s u me  t nu t  both the o b je c t  and background

q n i y  1. -ye!  p 0 1 1th i t  i s 1 s  can  be modeled by G u a s sia n  d i s t r i b u —

tions. The popuLation of edge p o in t s , however , could more

n a t ur a l l y  C ni  F e l l e d  by a u n i f o r m  i i  ; ;t r i b u ti o n . An a l te r -

n a t i v e  w o u l d  be to rn d, . l t h e  edge p o i n t s  by a n o t h e r  G a u s s i a n

d i s t r i b u tio n  -~ho :;e n e as i  lies between t ha t  of the ob jec t  and

b a c k g r o u n d  a i d  whose s t anda rd  d e v i a t i o n  is such t h at  the

population is relatively flat and straddles the object and

back ground populations. N . ither of these models will bc

examined in detail iii this paper.

B u s y n es s  meas r ’-s  based on co—occurrence matrices were

c o m p u t e d  f o r  t h r e s h o l d s  in t he ranqe  t = 17 to t = 32 f o r

each of the  b l u r re d  im a g e s  of  F i g s .  1 2 — 1 4 .  Busynes s

t h r t - ; h o lds a m -  l i s t e d  i i  l a b l t ; -  3.  h r ip i i s of busy nes s va lues

ire shown i ; Fiqa . 2 l ~~~ 3 .  On these curves , local m i n i m a  a r e

a lways  obt i u e d  b i t  w - ’ - n  the  m e a n s .  ~iot i t h a t . f o r  F u~~. 13

and 14 t h e r e  is a I m 1 i ; -  of t h re sho lds  between t h e  means

over wh ich  b u s y t eSs  h o  qes V et  y s i  wl y .

The r e s u l t  V of t h r i - s h o l d i  no t i e  p l t  u re s  of F i g s .  1 2 — 1 4

it  ev e r- 1- t } r - s h o l (i  in t he I )  = 17 to t = 32 are shown

in I - i C ; . 2 4 — 2 1 . ‘ l l i -  busyness t l i r , ’ ; 1 ; o l d ; ;  f o r  t h e  p i c t u r e s

blu rred over 2x2 n e i g h b o r  i°oi ls  i - i - r n  t i  m i n i m i z e  t iui t O f  i i

amount of noise in t l i e  ob p e t . . a nd b a c k qr  ound o f  t i n -  r i - s u i t  in -i
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____ - 
M i n i m um - B u s~ -n e o; Thresholds 

________

Part of No Blur 2x2 Blur 4x4 Blur 8x8 Blur

- 
Fig. (F ig. t )  (Fig. 12) (Fig . 13) (Fig. 14

a 24 24 25 27

b 25 24 26 28

c 26 25 27 28

d 24 25 27

e 25 25 25 27

f 25 26 27 28

F 
g 24 23 25 27

h 26 24 25 27

i 28 24 25 28

j 24 24 25 27

k 30 25 2 4  27

1 30 26 25 27

Table 3. Busyness thresholds for t he
p ictures of Fig . f and the
blurred pictures of Figs . 12 ,

13 and 14.
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a - c a-c

d- f d - f

g—i g—i

j—l j—l

Fig. 21. Fig. 22.

a—c

d-f

g-i

j—l

Fig. 23.

Figs. 21, 22 , 23. Graphs of busyness (y—axis )
vs. threshold (x-axis) for
the pictures of Figs. 12 ,
13 , and 14 , respectively.
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t h r e s h o l d e d  image . For t b .- h i g h e r  degrees  of a v e r a g i ng ,

4x4 and 8x8 , the n o i s e  in  the object and background in—

ti-riors i. s nearly zero ever a range  of th resho lds , so tha t

t h e  chief conta ibution to busyness is made by the border.

A s the threshold increase ;-; , the object shrinks , and its

border becomes smaLler , resulting in a lower busyness

v a l u e  u n t i l  ‘h e  t h r e sho ld  gets  so high that noise begins

to appear in the m t - n or of the object. Thus in these

cases , the b u s - n e s s  measure is dominated over a range of

thresholds by objeeL size rather than by noisiness , so

that it is not measuring what we wanted it to. Fortunately,

this can only happen in cases where the object and back-

ground h is togram peak s are na rrow and f a r  ap ar t , so that

noisiness is close to zero over a range of thresholds. As

pointed out earlier , su c h  cases are easy to threshold by

conventional methods; threshold evaluation is useful

pr imarily wi - i l i i i -  pe .ik s  overlap .

In order to compute discrepancy thresholds on the

blurred images of Figs. 12-14 we must assign some cost to

misclassifying border  p o i n t s .  In the model for blurred

images we have mentioned previously , points on the blurred

edge contribmit~ J to a thi rd g ray level population . It is

not clear how to coun t  t he cost of misclassying points in

the borde r popu l m t  i o n  fo r  several  reasons:

1) We don ’ t know which points in the mid-zone between

the ob j ec t and background mea n belong to the bor-

d i r  I)oI)ti~ it ion .
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2) Even if we could isolate the border population ,

since thresholding requires a two-level output , we

would be faced with the task of deciding which

border points belong to the object population and

which belong to the background population .

One solution to the problem of assigninq costs to mis-

classified border points is to assume that the misclassifi-

c a t i o n  cost is zero for these points. This corresponds to

u s i n g  the  p ar am e t .e rs  of the object and background distribu-

tions and their a priori probabilities to determine ti n -

probability of error as a function of t , as in Section 2.1.

The weights of the object , background and border popula-

tions are listed in Table 4 for each of the pictures of

Fig. 12 , 13 and 14. These pt-rcentages were computed using

the actual numbers of points in each of the three a r e as  of

thi.- images.

Assuming that the misclassification cost for border

points is zero , m i nimum erro r thresholds were computed f or

t l i  blurred Pictures of Fig. 12—14 using the probabilities

of t h e  obj i-ct. and b a c kg r ou n d  d i s t r i b u t i o n s  l i s ted  in  Table

4. These thresholds , whi ch are l isted in Tab le 5 , always

occur strictly between the object and background means .

Graphs of error for consecutive thresholds of Fig .  13

and 14 show th at there is a range of thresholds between

the means where the error is relatively constant. This

would be expected since the histograms of Fig . 13 and 14

have valleys which are also relatively flat.
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F i g u r e  Percen t m ~~ - bce

- - No . Parts Picture Area Object b i c k q  r o u n d  Border

6 a , d , g, j 4096 .505 .4~i5 .0
b , e, h , k 4096 .250 .750 .0
c , f, i , 1 4096 .103 .897 .0

12 a , d , g, j 3969 .499 .455 .046
b , e, h , k 396 9 .2 4 2  . 7 2 6 .03 2
c , f , i , 1 3969 .096  .884  .021

13 a, d , g, j 3721 . 485  .368 .147
b , e, h, k 3721 .226 .671 .103
c, f , i, 1 3721 .082 .852 .066

14  a , d , g ,  j 3249 .456  .152 . 3 9 2
b , e , h , k 3249  .192 .532 . 2 7 6
c, f , i , 1 3249 .056 .767 .177

Table 4. Fraction of picture area occupied
by object , background and border
for syntf-.atic images.
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Figure No Bl ur 2x2 Bl ur 4x4 Blu r 8x 8 Bl ur
P r t  ~~~~~~ 6) (Fi g .  12) (Fig . 13) (Fig. 14)

a 24 24 24 24

b 25 25 25 25

c 2i 25 25 25

d 25 26 26 26

e 27 26 26 26

f 29 2t 26 26

g 24 23 23 23

h 25 24 23 23

i 27 24 24 23

j 24 24 24 24

k 27 25 25 25

1 30 26 25 25

Ta ble 5. Di screpancy thresho lds for
sy nt het ic  p ic tures  assuming
zero cost for misclassifying
border p o i n t s .
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Assigning zero cost to misclassifying border points i3

unsatisfactory since we would like to choose a threshold

which resul ts in the object having a smooth-border. If we

assume a cutoff point k such that border poirtts greater

th an k should be c lass i f ied  as obj ect po ints  and a l l  others

as back ground poin ts then we can count  the cost of m i s c l a s s i f y -

ing border poi nts if we know the distr ibu tion of these

poin t s .  For s imp l i c i t y, we will assume that the gray levels

in the border are un i fo rmly  d i s t r ibu ted  between the ob jec t

and background means. We will choose k as the midpoint be-

tween the objec t and background means since we are assum ing

that the border is ramp—like , and border poin ts whose gray

levels are closer to the object mean should be classified

as objec t  points  and those closer to the background mean as

background p o i n t s .  We can now express P’ (er ror  t ) as

~{7~~ J
t
exP
[
~Ex~~

l
~~
]
dx} + P2{~~~ 

~2 
[~~] }

t-k+ p
~ ~l~~2

where p1, p2 and p3 are the a priori probabilities of the

ob j ec t , background , and border d istr ibu tions, respectively.

The third term in the above sum is the border misclassifica-

tion cost.

Using the percentages listed in Table 4, P’(error~ t) was

computed for a range of threshold for each picture. Graphs

of these values are shown in Figs. 27-29. The discrepancy
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a-c a—c

cl-f d-f

g-i g—i

j—1 j—1 
—

Fig. 27. Fig. 28.

a-c

d-f

g-i

j—l

Fig. 29.

Figs. 27, 28 , 29. Graphs of discrepancy (y—axis) , as suming
nonzero cost for misclassifying border
points , vs. threshold (x—axis) for the
pic tu res  of F i g s .  12 , 13 and 14.
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t hr e ; ;l o l, . i;; l i~~’ t - d  i n  T i b h -  6 w i - r I -  chosen i t t h e- m i n ima of

t h e s e  c r y - s .  N ’ t i -  l i t  f o r  l ; i ’ r h ~-r  d - g r t - s s  - i t  iv - r a g in ;

( - ; :-; 4 - m d  8x8) t h e  ~~i . } f ;  Of  P’ ( - n  ror t ) . i l w a i , ;; ac hie v :-

m i i i  m. ma at 2-I or - 25. I L  i s  is b i - e a m; ;e  t i e  p r o b . ib i l . ity of

e r r o r  as i r u i n g  z e r o  cost  or m i s c l a s i f ; r n i  b o r d e r  J 1 o i n t  s

i s  r e l a t  on ly const  a r t  o ver  a r . i ; - ; e  of t l t r - u h o l d . ;  i n c l u n i n - ;

b o th  the m i n i m u m  i i ~~1 t . h .- m i d p o i n t  h i t  w - - s  f .  m e a n s  - h in c c -

to -  bord e r m i sc l i . ;si t h e a t  1 ’  cost is g r i t - n  t h i n  z -r o  e Ve r .  —

where  -x e - p t  a t  t h e  m i d p o i nt  ( 2 5 ) ,  P ’  is m i n i m u m  - i t  - n  r - r

25. Thu.;, t i i -  t n t  eger  t i ;n ’ - s h o l d  o c c u r s  ~t t  i - i  • h r  24 (;

t i i i -  m i n i m u m  i s  less t han  2 5 )  or 25 (if tb m~ r . : - ii - is

C o z ; - u r  i n ’;  t h e  d i s c r e p a n c y  l i s t e d  in  T a b l e s  5

m d  6 wI  - can - ;ec- tha t the thresholds  d i  f f~ r ti ~ at mo un e

g n u - 1’ l ev e l .  Thus , the d i sc repancy  t l i r . -sh olds chosen

i s s u r n i n -  t h i t  the border m i s c l a s s i f i c a t i o n  cost  i s  or z-  0 -

d i f f e r  l i t t l e  f rom those  computed a s s u m i ng  t b - m t  t i n -  h e r d e r

m i s c l a s s i f i c a t i o n  is ze ro .  This  r e s u l t  i s  of i n t l - r e s t

since in r i - i l  blurred images it is o f t -n  d i f f i c u l t  ~o

i - s t i m a t - t h i -  i r n t u of the  b l u r r e d  bord .- r .

I f  w - -
‘ n i l i r r e  t h e  b u sy n e s s  t h r e sh o l d s  in  Tb  I - 3 fo r

t i -  2x2 blur red trn ag -s t - )  t h e  discrepancy hri-shold - i t

Table 5 or ‘i mh le 1, we see th -rt i n  a l  1 case; -; t n -s I I  f t  i r

P7 ~i t  mo st.  0th - gray li -v ol. I - n  the unblurred ~- 1 c t  U I i S  of

Fig . 1 we also t ound t h a t  b u ; ;y n -ss and  discrep .mr-icy

t h m r i - ; ;h r o I . d s  i g r i - i ci (to within o n i -  gray level) in t i n -  m.i j o t  i t y

of cases.

F c r  t i c  more  severe  cases of b l u r  ( F m  ; . 13 and 14)

h i - bu ;;yni ’-ns thresholds of Table 4 i i -  always g r oi t  on  t h a n



(1

F i - r u r e  No B l u r  2 x 2  B l u r  4x - I  B l u r  8x8 B l u r
P a r t  (F ~~~. ) ( F i g .  11 f F i - ~ . ( F i g .  14

a 2 4 2-1 24  24

2 5  25 25 25

c 25 25 25

( 1 25 25  25 2 5

e 27 26 25 25

f 29 26 25 25

g 24 24 24 2-1

h 25 24 24 24

i 27 24 24 24

24 ~4 24 24

k 27 25 25 25

1 30 26 25 25

Table 6. Discrepancy thresholds for
synthetic picture s assuming
nonzero cost f o r  misclassif ying
border points.



or - p i t 1 t o  t 1 -  corresponding disert -puni cy t ;r -siio lds of

Tables 5 and , w i t h  d i f f e r e n ce s  - is large ~.is four - j r m y

I t -Vo l  s. As a l r . - 1ts l y po i n t e d  ou t , t h i s  is because ¶ . 5 . -  La ~c~ —

ness m& - e ’u n ’-  in t h e r e -  cases is i n f  luenct -d by Lii- - o bj e c t

5 L ze , so t h u  t - m h igher threshold yields lowi -r  b i t .  y n ess

i.n.- c m u s e  it n il-o s the  object sma l It -r



CU A P TER IV

E X P E R I M E N T S  t - I ITH F L I R  IMAGE f$

The r e s u l t s  ob ta ined  in C h a p t e r  l i i  f o r  so b  h - t ic

in si-tes al e encouraging , but . it is difficult to ;n- d i c t

pi.- r f o r r n a n r c t -  on r ea l  images  f rom such r e su l t s , s i n c c-  t he

norm Il distribution assumptions may not be sat i sfi t-d bs

se - h imac -s . In t h i s  chap te r  we present  som . - re ults

ob ta ined  c r  a class of real images obtained from - i  F L I R

( F o r w a r d  Looking I n fr a R e d )  sensor .

The image data base used was obtained from the U. S.

A rmy N i g h t . V i s i o n  Laboratory, Fort Belvoir , Virgini a .

These images , shown in Fig . 30, each contain a dark target;

on a light background with a considerable amount of noise

in both populations. In addition , the edges of t . i n .- - d . j e c t s

are not s sa rj )  but blurred . It can be seen by e x am i n i  r i g

the histograms shown in Fig .  31 that a few 1 them exhibit

a bimodal structure (Fig. 3lb , e , f , q and ~ ) , bu t most of

t i c - r n  a re  u n i m o d a l .  I t  is not obvious  how t o  s e lec t

thresholds for these latter cases . In fact , it  s-~muse of the

amouri of noise in the pictures , the deqrec .- of bu ; -nc - ; - s in

ii thresholded i nr m ;e is v i - r y  s e n s i t  ive t o  t i i  - choice  of i

t nreshold .

Co—occur ri -ni ci mat rices c o m p r m t  ed on the p i c tu r s  -s of
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Fig. 30. FLIR images containing targets.

m-p

Fig. 31. Histograms of t i l l Pictures of l- i g. 30.
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Fig . 30 are d i r -;p I m - 1- -d in F i j .  32 usIng log s o i l i n g . I t .

sh ou ld c no ted  t nb t I l e  St i- -t a r t -  c f  t flc-se ma trices r - s - r r h c i e s

t b _ it of f b i -  - i t  t r i o s ‘ i m p u t ed f o r  t.he b l u r r e d  sy n i t  i n - t i c

in c er- ~- s .  The b l a c k  circular population on the m a i n  d i -n ~on al

m u eich mat rix rm . prc- ;.e-n i t s the  co—occur rence  of g r e -  l I v e  is

of pc i n t s i n  t h e  h m c k - ; r o i m n d  and accounts for t n  lar g e s t

n htn ci ’ c - r  of ici J - i n c u r ; i n  t h e  image . Pairs if gray levels

in the ohi jc- ; -t a x -  re-p ri.-sented by a f u z z y  popu f l i t i o n  w h i c h

is also c t - n t - u - c - i  on the main diagonal but whore - boundaries

31c . - not -.ilways ea si l y  defined (see for example Fig. 32~:).

The : ;n r e a re d  p o p u l a t i o n  be tween  those of the  o bj e c t  and

bmek- .iround is due to tine blur. In some of t. iii - matrices ,

it is possible to visually select a threshold which would

part it ion the matrix in such a way as to minimize the

r e s u l t i n g  busyness meas ure. For example , in Fig. 32e thert.-

appears to be a light region along the main diagonal be-

tw m-e r t h e  o bj e c t  and background populations. Selecting a

t h r e sho ld  in t h i s  area would  seem to r e s u l t  in t h e  fl-wi-s t

numbe r of object—background gray level adjaceneies. However ,

when t h e  distribution along the d i a g om i a l  is c ig ar - s h a p e d ,

at - ; in Fig . 32rn , and appears to be of nearly con ;ct .mnt gray

level , it is not clear that i.c u - ~yners s a t t a i n s  a m i n i m u m

of h r  t h i n  P -, choosing t at one of the e x t  reme ends ot the

gr ay sci I

Plots of busyness versus threshold are shown in Fig .

3 -~ for the target pict mire s of Fig. 30 . We see th at foi

each of t h e r o - p i ctu r e s  t h e  s hap i .- of the busyness curve

again resembles the shape of its gray level histogram .
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Fig. 32. Co-occurrence matrices (log-scaled) for
the pictures of Fig. 30.

a-d

e-h

i—l

rn-p

Fig .  3 3 .  Graphs of busyness (y - a x i s )  v s .  threshold
(x—axis) for the pictures of Fig . 30.
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t in t e l i t  ive m i n i m a h u t  c r -  not  himod ul in s : i m i e - . f i t . .

t h r - . ; h n~ l~ i ; ;  c - c r r c - r r ; c c r a h i r - r  tj; t h e  r -  l 1 m t i v e  - ru t irn i for the-se

- s r i - s  i r e  m i s o l i s t - - I  in ‘P~b c l e  7 . Both ti r - c~ n i y  l evel

i r i . ; t c - -~ r - m n i r ;  and t h e  bu s y n e s s  c - u r v e n  f o r  t h e  r e m a r i r u n  p L- —

f l i r t - . ; ( F i g .  30c , ci , h , i , , k , o and  p ) c o n s i s t  o t  a

s i n g l e  m ’ fl a r i d  i ; h o i i h d  r t o  f bi-  r i g r i t  of t h e  mod ’ ’ . The

s h o r u l c i - rs n , t b -  i i ;  y n i e s s  c u r vi . - ;-; hr bi t ter l - f  r n ~ -d and

]ess  n o i s y  t h i n  t. l u o ~~~- o u r  t h e  b u i s t ’ i j r a r n s . Liii Lb ;;e ‘ur’’ -s

the  l et  t - - it - S of t h e  s ;u o u l h - r  on t i -  i c u s y n i c -  ss curve is

l i s t  i -ri - m a  he b ;u ;y i u e s s  h n -r br c l d  u n  j i L l -  7 an d  i t s  p o st  t . i o n r

r s i mid i C - i  - - - L-y a V t  - i t i c - - t I  i i ni in Lb - q r 1 ip hs  o f  F i - - 3

Fo r c o n t ; - - t r l s o n  w m t Im l c i s y r r - ss  t h r - r ; h i c l d ; ;  , c i i s c r c ’ ; - u r r .- -:

r r - a h i e l . d s  ~i - n - - - . m l s o  compu t  c - c l  f o r  t he  p i c t u r e s  of F i t .  30 .

TI i n; I nvo l v t - c l  f I t t  i r i g  ~~~i i r a o f  G m  1.155 i - i r i s  to t he his t o g  r a n ’ i r ;

of t h e  i m a c j i - ; ;  u s i ng  m n  - m l i j o r i t u r n  d e s c r i b e d  by h u n t  n q ; t n r  in

I i I .  T h i ’  p - i n  u n r n - t ’ - r s  of t i n  d i s t r i b u t i o n s  r~ - auI tin g f r o m

u s i ng  h l a r t i - . j an ’ s piograms ire listed i n  T a b l e  8 .  To

- v a l u i t  e v i s u a l l y  ¶ 1 c c  q o c x l n i e s s  of t i t i - s i -  f i t ;  t i  t h e  h i s t - - —



Part Busyness Discrepancy
of Fi j . 30 T h r esh o l d  T h r e s h o l d

a 27 24

b 28 26

c 2 6 25

d 4 3 45

e 46 47

f 47 47

g 47 47

h 27 26

i 27 27

j 27 28

k 26 26

28 26

m 22 21

28 26

0 27 28

p 25 25

Table 7. Busyness and discrepancy thresholds
for the pictures of Fig. 30.

-J



P ar !  of
F u q . 3 1 hl~~ 0~ - 1)

a 2 i . 4 5 . 5  . 2 6  2 0 . 3  2 . 1  . 7 4

I) 3 [.4 3.7 . 2 2  21.9 2.2 .78

c 29.2 4.Ec .13 20.6 2.2 .87

47.4 1.8 .07 38.1 2.9 .93

1 49.4 .8 .16 40.6 3.5 .84

f 48.7 .5 .16 41.8 3 . 5  . 8 4

q 49.5 .7 .17 41.3 2.7 .83

ii 29.0 10.0 .10 18.0 3.3 .90

30.2 10.0 .16 20.2 2.9 .84

30.1 4.1 .12 20.9 3.4 .88

k 26.2 2.6 .17 23.6 2.3 .83

1 30.9 3.7 .23 21.6 2.2 .77

m 27.9 5.1 .27 16.1 2.4 .73

n 29.8 3.7 .22 21.4 2.5 .78

o 30.7 2.8 .06 21.8 2.7 .94

p 24.5 2.1 .18 21.2 2 . 2  .82

t abl e 8. Pm n in ne t m-rrr and wi-ights of Gaussian distributions
used to “fit ” the histograms of Fig. 31. tu 0, 00,

1) ’ are the mean and standard deviation of the

object and background distributions , respect i~rely;
I) and 1 - t are the a priori probabilities of the
object and background populations , respectively.
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gr a in s , F i g .  3-1 st r ew; - ;  t . i~~- h i s t o g ra m ; ;  s c u j - . - r i n n c p o s c - c t  on t i n

norma l c u r v e s .  Tb c ur v -s f i t  t h e  h t i s t o g r i n i t ;  q u i t

U s i n g  f b i -  paranc~ - t  e ra  l i s t e d  in  1 ab l e  8 , t h e  d i n e r  - i - i n n ’j

t s r  - sh o l d s  l i s t e d  in Tab le  7 were e c ) m p t I t c - d . he m t  t i - m n t

was made to c - s t . im a t e  the a rea  occ iip i - . 1 by t h o -  b or d i  - r  p o p u l - m —

t ~ (-Ott-i

Compiriny the bus-yni .. ss and discr- - j i t ney thre shold l i s t  - -d

in Table  7 s~iows t b i t t  the threshold; ; ire u s u m  1 ly close ,

witi; few exceptions. For all but one p ictur i- (Fi c j . 30-i )

the- dif ferenicc;- b et -,;c- -n the busyness and discrep:mncy

t h r e s h o l d s  u s  a t  mo;; t two t r a y  l e ve l s .  As can  be se ri f r o n c

F i-; . 35 , t c i  - t tiri - sho ld s chosen all rc’sul t in  re i ; ; o r - ~;ib 1e

;;t .- g n i e n t  a t  ions of  the images.



71

( 1) ( 2 )  ( 3 )  ( 1)  ( 2 )  ( 3 )

a i

bj
~~~~~~~~~~

j

1

- - 

m 

-

11±’ 111k
111k

h 

-- 

p

F ig .  34.  h i s t o g r a m s , c u r v i - ; ;  d e f i n e d  b y t h e  j a r  dm et i -r s lj ~~t c d
in  Tabl e 8 , and s i m p e r  imposed c u r vi - s .

a—p ) For  t h e  p i c t u r e s  of  F i g .  30~m — j -  i r e  ~ n ’iwni
( 1 )  - j r c ’ ,’ I c - vo l histograms (2) b a u s s i u n c  c i i i  v - s
us m r i g  “ l i t t e d ”  p ar am e t e r s , and  (3) su~ - -timpo seJ
h i  at o i ;na n Is on t h u m . - norma l curves .
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Fig. 35e—h). Results of thresholding the picture s of
Fig. 30e-h at every threshold i n  t he
r ang~~ specified.
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Fig. 30m-p at every threshold in the
ranqes specified.



CHAPTER V

CONCLUSIONS

We have compared thresholds obtained using busyness and

d iscrepancy me thods of thr eshold selection on both synthetic

and real data. These methods yielded similar good results

on unblurred synthetic images , slightly blurred synthetic

images (2x2 averaging neighborhood ) and real FLIR images

of targets.

The s i m i l a r i t y  between th resho lds  obtained us ing  these

two methods  is of i n t e re s t  s ince  busyness  t h r e sho ld s  are

less costly to compute than discrepancy thresholds. As dis-

cussed in Section 2.1 , the process of fitting normal curves

to the h i s t o g r a m  in order  to ob ta in  the pa rame te r s  to be

used in computing discrepancy thresholds is an expensive ,

iterative procedure. After the parameters have been

o b t a i n e d , however , the d i sc repancy  th resho ld  can be computed

in only a few operations. The cost of computing the gray

level  h i s togram w h i c h  is used as i npu t  to the f i t t i n g  pro-

cedure is proportional to the picture ar ea. Busyness

measures involve calculation of co—occurrence matrices; thLs

also r e q u i res i number of o p e r a t i o n s  p r o p o r t i o n a l  to t h e

p i c t u n m -  arc- i . Sums of ent r ies in thi- co—occurrence matrix

c i i  be e f t i c i e n t . 1 - ~ computed to o b t a i n  busyness  measures  f o r

a r u i I - ; m -  o f  t h r esh o l d s  ( S t e Sect ion  2 . 2 )  . From t hose b i u sy —

ness m e a s u r i . s the  busyness  t h r e s h o l d  can be obtained b”

1) se lec t  m g  t b - - m i n i m u m  in  the valley or 2) using a si-h c rn-

for shou l d i - r  det - i - t  i o n .  Th i s  l~i t  t er procedure  i s  complex ,

71~
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but can be done efficiently for small numbers of thresholds.

Even wi th the addi tiona l processing required f o r  ex am in ing

busynes s measures for a range of thresholds, the selection

of busynes s  thr esholds would seem to be a compu tationa l l y

less expensive procedure than selecting discrepancy

t h r e sho lds .

The busyness  and d i sc repancy  threshold  se lec t ion

methods can be extended to deal wi th  images whose h i s t o g r a m s

are m u l t i m o d a l .  An example is provided by images of w h i t e

blood cel ls , in w h i c h  there  are three types  of regions :

nucleus , cy top lasm , and background ; th i s  r e su l t s  in a t n —

modal h i s togram. In these cases the th resho ldcd  p i c t u r e

should have an output level corresponding to each histogram

mode . The d i sc repancy  th resho lds  can be selected by f i t t i n g

G a u s s i a n s  to the h i s t o g r a m  and f i n d i n g  i n t e r sec t ions  of the

fitted curves. Busyness can be computed from the co—

occurrence matrix by summing those e n t r i e s  cor respond ing  to

t hi c- types  of busyness which are of interest. For example ,

i f  t h e r e  are t h ree  ou tpu t  levels , then  the two th resho lds

used partition the co—occurrence matrix into nine rectangular

areas. The regions along the main diagonal represent the

co-occurrences of pairs of gray levels in the objects (e.g.,

nucle i and cell bodies) or in the background. The six off-

diagonal a r c - m s  measure the contributions of three types of

busyness: object 1 — background , objec t 2 - background , and

object 1- object 2 gray level adjacencies. Appropriate

thresholds can be chosen t o  minimize the sum of these three

busyness contributions.
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In summary ,  busyness thresholds are che aper to c o m p u te

t h a n  discrepancy thresholds and result in good image s e g m i - n i -

t a t i o n s .  The pe r fo rmance  of tIme busyness threshold selec-

tion method makes it a viable tool for image analysis.



APPENDIX A

A SURVEY OF THRESHOLD SELECTION TECHNIQUES

T h i s  append ix  p resen t s  a survey of th r eshold selection

techni gues . Most of the methods d iscussed deal  w i t h  images

comprised of two types  of regions , ob jec t  and background .

However , several of these methods are also appl icab le  to

images containing three or more homogeneous populations .

The purpose of the methods described is to segment  the

image into regions which can subsequently be analyzed based

on t h e i r  shapes , sizes , relative positions , and other

c h a r a c t e r i s t i c s .  The thresholded image also provides a

representation for the image which requires less storage than

the o r i g i n a l .

In i ts s imples t  form , th reshold  se lect ion involves

choosing a gray level t such that all gray levels gni - at c- r

than t are mapped into the “object ” labe l (denoted , say, by

gray level 1) , and all other gray levels are mapped into the

“background” labe l (gray level 0)

In a more general form , a threshold operator ca n  be

viewed as a test involving a function T of t h e  f o r m

T(x ,y, N(x ,y) , g(x ,y ) )

where ij- (x ,y) is the gray level of the point (x ,y) and N(x ,y)

der uot i - ;; some local property of the point (x,y), e.g., the

averaqe gra y level over some ne ighborhood. Fo r each po i nt

(x,y) in the  image , if g ( x , y )  T ( x , y , N ( x , y ) , q ( x , y ) )  t hen

(x,y) is labelled i i r ;  an o b j e c t  point ; ot huc - r w i s c - , (x,y) is

i mbell ed as a background point.

79
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When T depends only  on g (x ,y )  , the threshold w i ll be

called ~ loba l .  S imple th re sho ld ing  at  a spec i f i ed  g r a y  level

t is an examp le of a glora l threshold. If T depends on both

g ( x , y)  and N ( x , y ) , then the threshold  chosen by T w i l l  be

cal led a local t h re sho ld .  If T depends on the coo rd ina t e

values x , y as well as on g(x ,y) and N(x ,y) , then the

thresholding scheme will be cal led dynamic. One might , for

example , use a different thresholding criterion in areas of

the image which are known to be blurred . When using either

local or dynamic  t h resho ld ing  techniques , a t t e n t i o n  must  be

g iven  to the problem of artificial edges which are intro-

duced when the threshold at one point of the image differs

significantly from the threshold at an adjacent point.

We will discuss schemes for  g lobal , local and dynamic

thresholding in the sections which follow .
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A . l  Global  Thresho ld  Se lec t ion  Based on Gray Level H i s t o g r a m s

Some of the earliest techniques for automatic threshold

se l ec t ion  were globa l me thods  based on a n a l y s i s  of the  image ’ s

g r ay  level h i s t o g r a m .  If  the  objects  in an image are  d a r k e r

( i . e . ,  have h i g h e r  g ray  l eve l s)  than  the background , and , in

iddit i on , occupy a f i x e d  percentage  of t he  p i c tu re  area , then

we can use cr s imp le “ p - t i l e” method which was suggested by

Doyle [ 8 ] . This scheme chooses a threshold at the gray

level on the h i s t o g r a m  w h i c h  most closely corresponds to

mapping  at least  q2 of the g r a y  levels in to  the o b j e c t .  I f ,

for example , dark objects occupy 20% of the p i c t u r e  area ,

then we should threshold at the 80th percentile or , more

precisely, it the largest gray leve l allowing at least 20%

of the  p ic tu re  points  to be mapped in to  the o b j e c t .  This

method is imprac t i c a l  if the objec t  area is u n k n o w n  or v a r i c - n

from picture to picture .

For the p u r p o s e  of s e g m e n t i n g  images  of w h i t e -  blood

cel l s , Prewitt and Mendelsohn ( 9 1 chose thresholds a t  the

v a l l e y s  ( o r  an t i m o d e n ; )  on the- h i s t o g r a m .  Th i s  t e chn i que  i s

ca l l ed  t h i -  mode method . For four out of five of the  w h i t e

blood cc-Il t yp i- s tIns histograms we re trimodal , with modes

correspond i i i j to three dist inguishable areas in t he  i m a g e s :

background , nucleus , and cytoplasm . In these cases , two

t h r e s h o l d s  were  chosen , a t  the two v a l l e y  b o t t o m s . The t i  f t h

b l e n t ]  c e l l  type , b as o p hi l , produced a b imoda l  h i s t o g r a m , so

a s i n g l e  t h re s h o l d  was s e l e c t e d  in t h i s  case.  The a u t o m a t i c

sel ec t ion  scheme , w h i c h  i n v o l v e d  some sm o o t h i n g  of t he

h i st eq ram di ta , sea r eh ed f o r  I I t c  i(1c -s and p laced t h r  i ~sho ids at
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t h ;c - minima between them .

P u e w i t t  a nd Mende lsohn ’ s method  r e l i e d  h c - - i v l l y on t b 1

b imoda l  and t r i m o d a l st r u ct u r c  of t i n -  g r a y  level  h i s t e q r i r ,

w h i c h  c o n t a i n e d  peaks and v a l l e y s  c o r r e s p o n d i n g  to ~~~1 - - n t ~

of the  image mode l .  Ob jec t  and backg round  reg i ons  (ri- ~~r e--

sented by histogram peaks) were assumed ~o be of f a i r l y  con-

st ant  gray level , and to differ in average qray 1 -vc - l . Edges

(represented by valleys) were composed of interm ediat i- gray

levels  and were  less h e a v i l y  popu la t ed  t h a n  e i t h e r  oh cj oct or

back ground  i n t e r i o r s .  R e l a t i o n s h ip s between o b j e ct  ni- i n i o ns

depended on v~h et h e r  the o b j e c t  was modeled by one or more

modes. Other work by Wall et al. (101 has al -n t i - c - i c  I c - n e  ( i i i

m o d e l i n g  ob j ec t s  and t h e i r  edges in an attempt to derive- t h c

s t r u c t ur e -  of the corresponding qray level histogram.
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~~~~~~~~~~~~~

A . 2  Globa l Thresho ld  Selection Based on Local Properties

Local property statistics have been used to aid in the

selection of global thresholds in two ways. Values of local

properties have been used to improve the shape of the gray

leve l histogram by, for  example , making it more strongly bi-

modal. This facilitates the use of global methods such as this

mode method (described iii S e c t i o n  1~. 1)  w h i e hi can then easily be

applied . Method s involving statistics of local properties

have also been suggested to directly compute a global

threshold. The local operators employed ii; the methods de-

scribed in this following subsections include both gradient

and  Laplacian operators.

_ _ _ _ _ _ _ _  ..
- - - -—— ---
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A.2.l Methods that “ Improve ” Histograms

Techniques described in this subsection make use of

local properties to improve the shape of the gray level

histogram .

Mason et al. [11] have proposed a method for making

histogram valleys deeper , in order to facilitate the use of

the mode method. They computed a histogram in which not

all points were counted equally. The lower the value of a

difference operator at a point , the more weight was given to

that point . Thus , points interior to the object or back-

ground , i . e . ,  those points whose difference values were low ,

were counted heavil y, while those points on the border ,

i.e., those with high differences , were counted less heavily.

The overall effect of the weighting process should be to make

the  h i s tog ram peaks sharper and higher , and the valley dee~-er

so t h a t  the valley bottom can mori - easily be selected as a

t h r e s h o l d .  Th i s  method has been shown to derive reasonabic-

thresholds for images , though the effect ofT the valley dc -per ;-

ing is not substantial in many cases [121 .

For histog rams in which the va lley is broad and the

peaks are very unequal in size , it is often difficult to

choose a threshold using the methods describe d in Section

A .i . In these cases a technique based on a digital “Lap lacian ”

op m . r i t O r  c - a r m be u;;eel to produce a strongly bimodal histogram

for which it is easier to select a threshold . T h i s  method

was suggested by Weszk a et ml. (131.

The “Laplacian ” operator is computed by t a k i ng

absolute d i f f e r e nc e s  between the gray level at a point m d
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the average C J r a \  levi- 1 in some ne u c ; h b o r h o o d  c e nt - red  a t  the

p o i n t .  I f  we- r e s t r i c t  c o n s id e r a t i o n  to only thonc jau nts

h iv i n g  Lap l~tcian values in , say , the  90th  p c- r cc- r m til t . - then w--

would be ignoring all points e x c e p t  those  w h i c h  lii on or

near the- borders of objects. For a g r a y  l ev i si  z w h i c h  s u r —

v i .v t s  t h i s  f i l t e r i n g  ope ra t ion  we w o u l d  expec t  t i n -  ~ rnbabi—

lity th -tt z lies in the object to be about equal to the- prob-

ability t h a t  z l ies in the  background . Thus , a g r ay level

h i s t o g r a m  of only those points having hi gh LapI- uc i~tn valui s

should be more symmetrical than the histogram of the en t i r e -

pictur e . In addition , since the Laplacian is a second-

d i f f e r e n c e  opera to r  w h i c h  produces low value s in the m i d d l e -

of ramps of ideal blurred edges , the center of the filti-r d

histogram valley should be sparsely populated . T hi s  n i - s u l t . ;

in -a deepened and sha rpened  v a l l e y  h o t t  on s e j ci r ;mt i ng  t h i -  - t W I

- i- u~;s. Experimental results show that the lo . - i t ion of the

v a l l e y  bottom is rc. latively insensitive over a r ir ; c p- o f  j - e r —

c c - n t i l c t ;  u t -;ed t c c  f i l t e r  the Lapl m ci irm 114]
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A . 2 . 2  Methods_ tha t Co mp u te Th r esho lds

Techn i - j u e s  d e s c r i be d  in t h i s  a u b a i - c t i o n  ic k u c i W -

v a l u e; - ; of  [n e i l  j i r o p e r t  i e s  t o  d i r i - c t l y  c o m p u t e  i t ; i i -shold

for in image.

Technique s analogous to t h e  La p la c i i i ;  based  h - c h i r ;  i qu i  -

desc r ibed  in ~-O.-ct ion A.  2 . 1  h a v e  a l so  hei r ; W - v e l r c V - d  us i  rig

g r a d i e n t  o p e r a t o r s .  These  s c h u i  - rn - ; ;  l n v ol v c  ap~ c l  y i ng  u d i g i t a l

g r a d i e n t  to an i m a g e -  (r a t h e r  t h a n  the  L a p l a c  i a n )  ari d t i n - i i

h i st o g r a mm i ng  onl y those  p o i n t s  h a v i n g  h i g h  g r a d i e n t  v a l u i s .

bc . would  a g a i n expect t h e - s e  po in t s  to l i e  on or n e a r  r h e

borde rs of o b j e c t s , and to have a bimod;.m l  g r a y  l c - v -l  h i s t o —

i. ;ram . Thus , t he  v a l l e y  bo t tom s h o u l d  c o r r i ; s j c i n n i tO t i -  gray

level at w h i c n  t he  e dg e - s  of t h e  o b j i . - ct s  a r c - s t e e p - s t .  l W -

i - ver , as we use h i g h e r  and h i g h e r  p — t i l e . ; r a n g - a , t h e  l ; i s t . o—

g ram peaks  - t i - f  c i a - n  an d  c loser  t o g e t h e r  ( s i n c e - t h e  j - u j f l t  S

b i - i n g  h i s togrammed l i e  c loser  and c l os i -r  to t h e  e d - r e s  of

ob j i . - c t s )  u n t i l  f i n a l l y  a s i n i j i e  mode is r educed  b; t h e  h i g h

g r a d i e n t  p o i n t  a . T h u s , i f  a h i g h  I i — t  i Ic rare.g- is ua~-d , th e -n

whc- t. hi -r tin. .- I iltc-red hi stogram is bimodal er un inu o di l , ¶ he

avc-r ige gray leve l of thu. - f il t c - red points should P - m

reasonable p l ac - t i c  threshold I m e i r r I u i g -  i n  e t c h e r  to n-~ - m r i t e

ob j V C t S  f r o m  b - m c k g  r o u n d .  Ka t z usc - c i  ii i s m et  cit i n [ 1 3 1

Th r e sho lc.i i nq  i t t i i . - i ; r ~i - -  l i - v o l  c’eiu r & - ; ;j c a i n i i n q  - ¶ he iSc i hi on

t b .  f i l t i - r i - d  h i s t o g r a m  ( i f  i t  i s  u n i m o d m l )  s h i o u l c . h y i e ld r e —

n i l  t :; s i m u  I a r t o  t h o s e  (11)1 i i t - med t a 1 t h r e - s i m o l d  i i i q  i t  t h e  m e a t -i

W c - n ; z k a  and R o s i - n f  i - i d  ; i u g g e n s t t - i  t h i s  in  [ l ( i ~

W a t a t m ib e 1 17 1  l i v  loped .i m u - t h u  i l s o  b r a d  on - i

di ! f r ’ r . - n c i n c j  O } u f l r I t i O f l  
~~~~

‘ (x ,y) . u I ) } ) i l i S J  i t  ‘ V i i ‘>1 } e ) i r I t j - ( x , y )



87

in the image. He computed for each gray level z ,

d = p ’ ( x ,y)
(x ,y )es~

where s~ is the set of points having gray level z. The

threshold was then chosen at the level z for which d was

highest. Since this level has a high proportion of high-

difference points , it should occur just at the borders be-

tween objects and background . Watanabe achieved good seg-

mentations with this method on a data base of cell images ,

but poor results were obtained by Weszka et al. [18) on

images of chromosomes , handwriting, and cloud cover .

- 
_ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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A . 3  Local Thresho ld  Select ion

Automat ic  th reshold  selection techniques for use i n

op t i c a l  cha rac te r  r e c o g n i t i o n  systems have recu;ivu: c. l much

a t t e n t i o n .  Here , the th resho lded  ou tpu t  is used as i n p u t  t o

the recogni t ion  log ic , the performance of which can be- used

to eva lua t e  the th resho ld ing  scheme . Since  OCR sy; - ;t . c .-mn s  mus t

deal w i t h  a wide range  of p r i n t  q u a l i t y  d i s t o r t i o n s  cc /er  a

s i n g l e  document (or  even over a s i ng l e  c h a r a c te r )  , a comb in-

a t i o n  of t h r e s h o l d  o p e r a t i o n s  is o f t e n  used , w i t h  each oper-

a to r  desi gned to be sen s i t i v e  to a d i f f e r e n t  ty p i - of video

d i s t o r t i o n .

Bartz [19] described a system making use of four linear

t h r e s h old  o p e r a t o r s .  They we re thc - n combined to f o r m  a

single threshold which was adapted to the differ e nt type s of

p r i n t  q u a l i t y  d i s t o r t i o n s  th at occurred  i n  the  i n p u t .  A

t h r e s h o l d  ope ra to r  T 1 s e n s i t i v e  to c o n t r a s t , f o r  example , can

be exp r u- ;- ;sed as

T 1 = k 1 V + c1

where ~ is the avc-r aqu - - contrast over previously scarr nrsd

characters , and k1 and c1 are optimizing p a r a m e t e r s .  The

final t hreshold output , cGmbining T1 with other similarly

g ’ - n e r a t i - c l  t h i r i - s h o l d a , can f l i t - r i  be a lp 1 ic- d locally cu to

s e v e r a l  ch a r a c t e r s .

To handle large van - m t i o t i s  in sb - i d  i ng wi ich can nucc u~

even w i t h i n  a s i r u j l u -  c l m m r - u - t  i t  , W o l f e  I 20] ciev . l.aI ~r

for thr -shold ing analog gray l e v i -  is. In e ichi n

a point , t w o  o~~-rators w i -r u - i p~ - l  u - ’d. Time f u r  -
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averaged gray levels in the image over 4x4 neighborhoods and

then compared the mean gray leve l at a point p to those of

its n(~iqhbors at distance 4 from p. If the gray level of p is

darker than the gray levels of the two points whose orienta-

tions differ by 1800 and which are distance 8 apart , then p

is labelled as belonging to the object. The second operator

is similar , but uses a larger neighborhood so that wider arLa~

of character s cou ld also be detected.

Another technique for selecting thresholds based on the

qray levels in a neighborhood of a point was used by Ullmann

[21]. Only the following points labelled n in a 5x5 nei ghbor-

hood of a point p contributed to the threshold decision at p:

o n  n n o
n n o n n
fl o p  O n
n n O n n
o n n n o

Based on experimental results , two rules were used to select

a threshold at a point . The rule chosen depended on the values

of the highes t (whitest) gray level in the neighborhood of p.

This value was denoted by n . Rule (a) which follows wa s
p

app lied when n ~. 40 and rule (b) was applied when 4 0.

The two rules are :

(a )  Label p as an object point i f for some point n in

the neighborhood we have

p-n I

where i is some predefined threshold; otherwise,

label p as a background point.

_ _ _  - - - -
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(b) Label p as an object point i f for at least one of

its neighbors n ,

where is some predefined constant; otherwise ,

label p as a back ground point.

Notice that rule (a ) uses differences between a po int p and

its neighbors to determine a threshold.

Two-dimensional plots of gray level versus gradient

value have also been used to ease the task of threshold selec-

tion . In an early paper , Morrin [22 ]  used these plots to

convert grayscale images into black-white sketches whose

resolution and contrast are superior to halftone representa-

tions. Recent work by Panda [231 involves methods in which a

threshold applied at a point depends on both the gray level

and edge value of the point. Several segmentat ion procedures

were proposed based on image models suggested for FLIR images

containing targets [24 , 25].

The proposed models all resulted in trimodal distribu-

tions in the plot of frequency as a function of gray level and

edge value . The three modes in this joint histogram corres-

pond to image points inter ior to the object , interior to the

background , and on the borders between the object and the

background .

Segmentation procedures based on joint histogram analysis

are applied to FLIR images in [23] and their results are com-

pared with thresholded images obtained using a global threshold-

ing scheme (the mode method) . One method which was also used
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by Katz selects a threshold at the mean gray level of those

points hav ing h igh  edge values . A second scheme involves

va l l e y  finding on a gray level histogram of those points

havin g low edge values. Other more complex procedures re-

quire finding curves which follow valleys in the joint histo-

gram. The best segmentations were obtained using a hybrid

scheme that made use of the valley in the histogram of low

edge value points and the mea n of the high edge value points .
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A .4 ~yn amic  Threshold Select ion

Chow and Kaneko [26] used a dynamic threshold selection

scheme for detecting boundaries in radiographic images. Their

method was designed to perform well on low quality radio-

graphic images in which a single global threshold is inadequate

due to contrast differences throughou ’ the image. As in the

local threshold selection techniques described in Section

A .2, local st a t i stics were measured in over lapping windows

of the image . (Window size 7x7 was used in the experiments.)

These statistics consisted of the histogram in each window

and its variance . In each window the histogram was

modeled by one or two normal d i s t r i b ut ions , depending on

whether the histogram was unimodal or bimodal in shape.

For each h istogram whose var ian ce exceeded some prede f ined

threshold , parameters of the component distributions were

es timated . For those windows whose mixtur e distribution s

sa tisf ied a bimodal i ty  test , m i n imu m error  thresho lds wer e

selected . Since these windows consist of mixtures of

object and background populations , they should be located

on the boundaries of objects.  Using the thresholds selec ted

for such windows , interpolation was emp loyed to obta in

thresholds for every point in the image. Notice that in this

last step of the algorithm the thresholds were selected

dynamically ; that is, the value of the threshold at a point

depended on its proximity to boundary points (or their

neighbors) whose thresholds were determined using the local

histogram analysis described above . The interpolation step

was also applied to the thresholds computed for the bimoda l
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windows in order to ensure a gradual transition . Inter-

polating on a pointwise basis eliminates artificial edges

at the boundaries of the windows.



APPENDIX B

ON MEASURING THE DI SCREPAN CY BE TWE~
A THRESH OLDED IMAGE AND ITS e~~I t I ~~A~ ,

As pointed out in Chapter II , it is n~~t otjv i u s  how to

measure the discrepancy between a thresholded image and its

origina l , since this discrepancy depends on the output gray

levels used in the thresholded image . In this appendix we

invest igate an approach to measur ing th is d isc repancy .

Let u be the mean and a the standard deviation of g ’s

gray level. We define the a-thresholding of g at t to be

the image 
~~ ~

iven by

~~i i + c ~o if g ( x , y)  t

cto if g ( x ,y )  < t

The reason for using this concept of ~-thresholding, where

the output gray levels depend on the grayscale of g, is

that  otherwise we could not f a i r l y  evaluate the discrepancy

between g and 
~~~~~~~ 

Suppose, for example , that we used fixed

output gray levels, say 0 and 100, and suppose that g ’s

gray levels were all between 10 and 20. In this case ,

would be minimized by choosing t 20 , i.e., - 0;

we could never find an interesting thresholding of g in this

way .

How should the factor ~ be chosen? Let us consider

several examples. Suppose first that the gray levels of g

are uniformly distributed with mean p and range 2r (i.e.,

uniformly—distributed in the interval [p—r , p+r]). In this

case we have a = r/13. If we threshold g at i i  (which , by

94

.- - —- -- - —
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symmetry ,  should be “optimum ”) , and use output levels

p 4
,~

o , we evidently have minimum discrepancy when ‘~~~~ = r/2,

i . €~. ,  when ~ = f3/2. On the other hand , suppose tha t  g con-

tains only the gray levels p —r  and p+r ; here we have a = r ,

so that if we threshold at p (or anywhere str ic t ly  between

p—r and p -Fr) , and use output levels p ± —
, we obtain zero

discrepancy .

For any probability density , if we use output levels A

and B, then the minimum-discrepancy threshold is always at

the mean of the output levels. To see this , let the density

be f ;  then the mean squared error for threshold t is

J
(z_A) 2fdz +

To f i nd  the t that  minimizes  this error , we differentiate

wi th  respect to t and equate the result  to 0, obta ining

(t—A) 2f — (t—B) 2f = 0

or (t-A)2 (t—B)2, so that (t—A) = .~(t—B) . Here the positive

root gives the absurd result A=B , whereas the negative root

gives 2t = A+B , or t = (A+B)/2 . Thus if we use output levels

p xo , the minimum-discrepancy threshold is always at the

mean.

Let us next consider the case where g ’s histogram is a

mixture of two normal distributions with means and standard
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deviations p , ‘~ and a , t , respectively, and which occupy

fractions 0 and 1-0 of the picture area. it is not hard to

verify that the mean and variance of this mixture ar’ given

by

m = Up + (l—0)v

= Ito 2 + ( 1_ O ) 1 2 
+ O ( l - ~~) ( v )

2

To f i nd  the a tha t minimizes  the mean sq uared error , we must

d i f f e r e n t i ate

J 2  fdz + 
Jm

(z_ (m+ss)) 2fdz

with respect to a and equate the result to zero , where f is

the mixture distribution. Since these are definite integrals

that depend on the parameter a, there is no elementary

approach to solving this equation . Thus as soon as we make a

relatively realistic assumption about g ’s histogram , the prob-

lem of choosing ci becomes non-elementary . For this reason ,

this approach to measuring thresholding discrepancy will not

be pursued further.
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